本篇文章给大家带来的内容是关于MapReduce的基本内容介绍(附代码),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。 1、WordCount程序 1.1 WordCount源程序 import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
public WordCount() {
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = (new GenericOptionsParser(conf, args)).getRemainingArgs();
if(otherArgs.length < 2) {
System.err.println("Usage: wordcount <in> [<in>...] <out>");
System.exit(2);
}
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(WordCount.TokenizerMapper.class);
job.setCombinerClass(WordCount.IntSumReducer.class);
job.setReducerClass(WordCount.IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
for(int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true)?0:1);
}
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
private static final IntWritable one = new IntWritable(1);
private Text word = new Text();
public TokenizerMapper() {
}
public void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while(itr.hasMoreTokens()) {
this.word.set(itr.nextToken());
context.write(this.word, one);
}
}
}
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public IntSumReducer() {
}
public void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
int sum = 0;
IntWritable val;
for(Iterator i$ = values.iterator(); i$.hasNext(); sum += val.get()) {
val = (IntWritable)i$.next();
}
this.result.set(sum);
context.write(key, this.result);
}
}
} 1.2 运行程序,Run As->Java Applicatiion
1.3 编译打包程序,产生Jar文件 
2 运行程序 2.1 建立要统计词频的文本文件 wordfile1.txt Spark Hadoop Big Data wordfile2.txt Spark Hadoop Big Cloud 2.2 启动hdfs,新建input文件夹,上传词频文件 cd /usr/local/hadoop/ ./sbin/start-dfs.sh ./bin/hadoop fs -mkdir input ./bin/hadoop fs -put /home/hadoop/wordfile1.txt input ./bin/hadoop fs -put /home/hadoop/wordfile2.txt input 2.3 查看已上传的词频文件: hadoop@dblab-VirtualBox:/usr/local/hadoop$ ./bin/hadoop fs -ls . Found 2 items drwxr-xr-x - hadoop supergroup 0 2019-02-11 15:40 input -rw-r--r-- 1 hadoop supergroup 5 2019-02-10 20:22 test.txt hadoop@dblab-VirtualBox:/usr/local/hadoop$ ./bin/hadoop fs -ls ./input Found 2 items -rw-r--r-- 1 hadoop supergroup 27 2019-02-11 15:40 input/wordfile1.txt -rw-r--r-- 1 hadoop supergroup 29 2019-02-11 15:40 input/wordfile2.txt 2.4 运行WordCount ./bin/hadoop jar /home/hadoop/WordCount.jar input output 屏幕上会输入大段信息 然后可以查看运行结果: hadoop@dblab-VirtualBox:/usr/local/hadoop$ ./bin/hadoop fs -cat output/* Hadoop 2 Spark 2 以上就是MapReduce的基本内容介绍(附代码)的详细内容,更多请关注模板之家(www.mb5.com.cn)其它相关文章! |