0存储引擎介绍myisam存储:如果表对事务要求不高,同时是以查询和添加为主的,我们考虑使用myisam存储引擎,比如bbs中的发帖表,回复表需要定时进行碎片整理(因为删除的数据还是存在):optimizetabletable_name;In ...
0 存储引擎介绍
InnoDB存储:对事务要求高,保存的数据都是重要数据,我们建议使用INN0DB,比如订单表,账号表. 面试问MyISAM和INNODB的区别:
Mermory存储:比如我们数据变化频繁,不需要入库,同时又频繁的查询和修改,我们考虑使用memory 查看mysql以提供什么存储引擎: 查看mysql当前默认的存储引擎: 1 SQL性能分析SQL性能下降原因:
通常SQL调优过程:
总结:
2 常见通用的JOIN查询SQL执行加载顺序手写顺序: SELECT DISTINCT <select_list>FROM <left_table> <join_type>JOIN <right_table> on <join_codition> //join_codition:比如员工的部门ID和部门表的主键id相同WHERE <where_condition>GROUP BY <group_by_list>HAVING <having_condition>ORDER BY <order_by_condition>LIMIT <limit_number> 登录后复制 MySQL机读顺序: 1 FROM <left_table> 2 ON <join_condition> 3 <join_type> JOIN <right_table> 4 WHERE <where_condition> 5 GROUP BY <group_by_list> 6 HAVING <having_condition> 7 SELECT 8 DISTINCT <select_list> 9 ORDER BY <order_by_condition> 10 LIMIT <limit_number> 登录后复制 总结:
七种JOIN写法
CREATE TABLE tbl_dept( id INT(11) NOT NULL AUTO_INCREMENT, deptName VARCHAR(30) DEFAULT NULL, locAdd VARCHAR(40) DEFAULT NULL, PRIMARY KEY(id))ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;//设置存储引擎,主键自动增长和默认文本字符集CREATE TABLE tbl_emp ( id INT(11) NOT NULL AUTO_INCREMENT, NAME VARCHAR(20) DEFAULT NULL, deptId INT(11) DEFAULT NULL, PRIMARY KEY (id), KEY fk_dept_Id (deptId) #CONSTRAINT 'fk_dept_Id' foreign key ('deptId') references 'tbl_dept'('Id'))ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;INSERT INTO tbl_dept(deptName,locAdd) VALUES('RD',11);INSERT INTO tbl_dept(deptName,locAdd) VALUES('HR',12);INSERT INTO tbl_dept(deptName,locAdd) VALUES('MK',13);INSERT INTO tbl_dept(deptName,locAdd) VALUES('MIS',14);INSERT INTO tbl_dept(deptName,locAdd) VALUES('FD',15);INSERT INTO tbl_emp(NAME,deptId) VALUES('z3',1);INSERT INTO tbl_emp(NAME,deptId) VALUES('z4',1);INSERT INTO tbl_emp(NAME,deptId) VALUES('z5',1);INSERT INTO tbl_emp(NAME,deptId) VALUES('w5',2);INSERT INTO tbl_emp(NAME,deptId) VALUES('w6',2);INSERT INTO tbl_emp(NAME,deptId) VALUES('s7',3);INSERT INTO tbl_emp(NAME,deptId) VALUES('s8',4);INSERT INTO tbl_emp(NAME,deptId) VALUES('s9',51);#查询执行后结果mysql> select * from tbl_dept;+----+----------+--------+| id | deptName | locAdd |+----+----------+--------+| 1 | RD | 11 || 2 | HR | 12 || 3 | MK | 13 || 4 | MIS | 14 || 5 | FD | 15 |+----+----------+--------+5 rows in set (0.00 sec)mysql> select * from tbl_emp;+----+------+--------+| id | NAME | deptId |+----+------+--------+| 1 | z3 | 1 || 2 | z4 | 1 || 3 | z5 | 1 || 4 | w5 | 2 || 5 | w6 | 2 || 6 | s7 | 3 || 7 | s8 | 4 || 8 | s9 | 51 |+----+------+--------+8 rows in set (0.00 sec) 登录后复制 1、inner join:只有 deptId 和 id 的共有部分 2、left join(全A):前七条共有数据;第八条a表独有数据,b表补null 3、right join(全B):前七条共有数据;第八条b表独有数据,a表补null
3 索引介绍3.1 索引是什么
索引的目的在于提高查询效率,可以类比字典。 查找单词“mysql”时,通常需要先定位到字母m,然后向下查找y字母,最后找到剩余的“sql”部分。 如果没有索引,那么你可能需要逐个逐个寻找,如果我想找到Java开头的单词呢?或者Oracle开头的单词呢? 是不是觉得如果没有索引,这个事情根本无法完成? 索引可以理解为: 下图就是一种可能的索引方式示例: 为了加快Col2的查找,可以维护一个右边所示的二叉查找树,每个节点分别包含索引键值和一个指向对应数据记录物理地址的指针,这样就可以运用二叉查找在一定的复杂度内获取到相应数据,从而快速的检索出符合条件的记录 结论: 一般来说索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。 通常情况下,我们所说的索引都是采用B树(一种多路搜索树,不一定是二叉树结构)来组织的。其中聚集索引,次要索引,覆盖索引,复合索引,前缀索引,唯一索引默认都是使用B+树索引,统称索引。当然,除了B+树这种类型的索引之外,还有哈稀索引(hash index)等 3.2 索引优劣势优势:
劣势:
3.3 索引分类和建索引命令语句主键索引:索引值必须是唯一的,且不能为NULL
普通索引:索引值可出现多次
全文索引:主要是针对文本的检索,如:文章,全文索引只针对MyISAM引擎有效,并且只针对英文内容生效
唯一索引:索引列的值必须唯一,但允许有空值NULL,并可以有多个。
单值索引:即一个索引只包含单个列,一个表可以有多个单列索引。
select * from user where name=''; //经常查name字段,为其建索引create index idx_user_name on user(name); 登录后复制 复合索引:即一个索引包含多个列
select * from user where name='' and email=''; //经常查name和email字段,为其建索引create index idx_user_name on user(name, email); 登录后复制 查询索引
删除索引
3.4 索引结构与检索原理MySQL索引结构:
初始化介绍 一颗b+树,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,包含指针P1、P2、P3, 真实的数据存在于叶子节点:3、5、9、10、13、15、28、29、36、60、75、79、90、99。 非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。 查找过程 这句话可以重写为:在查找数据项29时,需要将磁盘块1从磁盘加载到内存,这一过程需要进行一次IO。在内存中用二分查找确定 29 在 17 和 35 之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29 在 26 和 30 之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO 真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高 3.5 哪些情况适合建索引
3.6 哪些情况不适合建索引
假如一个表有10万行记录,有一个字段A只有T和F两种值,且每个值的分布概率天约为50%,那么对这种表A字段建索引一般不会提高数据库的查询速度。 索引的选择性是指索引列中不同值的数目与表中记录数的比。如果一个表中有2000条记录,表索引列有1980个不同的值,那么这个索引的选择性就是1980/2000=0.99。一个索引的选择性越接近于1,这个索引的效率就越高 4 性能分析4.1 性能分析前提知识MySQL Query Optimizer(查询优化器)[ˈkwɪəri] [ˈɒptɪmaɪzə] 当客户端向MySQL请求一条Query,命令解析器模块完成请求分类,区别出是SELECT并转发给MySQL Query Optimizer时,MySQL Query Optimizer首先会对整条Query进行优化,处理掉一些常量表达式的预算直接换算成常量值。并对Query中的查询条件进行简化和转换,如去掉一些无用或显而易见的条件、结构调整等。然后分析Query 中的 Hint信息(如果有),看显示Hint信息是否可以完全确定该Query的执行计划。如果没有Hint 或Hint信息还不足以完全确定执行计划,则会读取所涉及对象的统计信息,根据Query进行写相应的计算分析,然后再得出最后的执行计划 MySQL常见瓶颈:
4.2 Explain使用简介使用EXPLAIN关键字可以模拟优化器执行SQL查询语句,从而知道MySQL是如何处理你的SQL语句的。分析你的查询语句或是表结构的性能瓶颈 官网地址 Explain的作用:
使用Explain:
mysql> select * from tbl_emp; +----+------+--------+ | id | NAME | deptId | +----+------+--------+ | 1 | z3 | 1 | | 2 | z4 | 1 | | 3 | z5 | 1 | | 4 | w5 | 2 | | 5 | w6 | 2 | | 6 | s7 | 3 | | 7 | s8 | 4 | | 8 | s9 | 51 | +----+------+--------+ 8 rows in set (0.00 sec) mysql> explain select * from tbl_emp; +----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-------+ | 1 | SIMPLE | tbl_emp | NULL | ALL | NULL | NULL | NULL | NULL | 8 | 100.00 | NULL | +----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-------+ 1 row in set, 1 warning (0.00 sec) 登录后复制 4.3 执行计划包含的信息字段解释(重中之重)执行计划包含的信息( 面试重点: id(表的读取顺序)select查询的序列号,包含一组数字,表示查询中执行select子句或操作表的顺序 三种情况:
select_type( 数据读取操作的操作类型)查询的类型,主要是用于区别普通查询、联合查询、子查询等的复杂查询。
table(显示执行的表名)显示这一行的数据是关于哪张表的 type(访问类型排列)显示查询使用了何种类型 访问类型排列: type常用八种类型:
详细说明
possible_keys(哪些索引可以使用)显示可能应用在这张表中的索引,一个或多个。查询涉及到的字段火若存在索引,则该索引将被列出,但不一定被查询实际使用(系统认为理论上会使用某些索引) key(哪些索引被实际使用)实际使用的索引。如果为NULL,则没有使用索引(要么没建,要么建了失效) 查询中若使用了覆盖索引,则该索引仅出现在key列表中 覆盖索引:建的索引字段和查询的字段一致,如下图 key_len(消耗的字节数)表示索引中使用的字节数,可通过该列计算查询中使用的索引的长度。在不损失精确性的情况下,长度越短越好 key_len显示的值为索引字段的最大可能长度,并非实际使用长度,即key_len是根据表定义计算而得,不是通过表内检索出的 ref(表之间的引用)显示索引的哪一列被使用了,如果可能的话,是一个常数。哪些列或常量被用于查找索引列上的值。 rows(每张表有多少行被优化器查询)根据表统计信息及索引选用情况,大致估算出找到所需的记录所需要读取的行数(越小越好) 未建索引时: Extra [ˈekstrə]包含不适合在其他列中显示但十分重要的额外信息 信息种类:Using filesort 、Using temporary 、Using index 、Using where 、Using join buffer 、impossible where 、select tables optimized away 、distinct Using filesort(需要优化) 说明mysql会对数据使用一个外部的索引排序,而不是按照表内的索引顺序进行读取。当MySQL无法使用索引来完成排序操作时,就会进行所谓的“文件排序”操作 Using temporary(需要优化) 使了用临时表保存中间结果,MysQL在对查询结果排序时使用临时表。常见于排序order by和分组查询group by Using index(good) 表示相应的select操作中使用了覆盖索引(Covering Index),避免访问了表的数据行,效率不错!
覆盖索引 / 索引覆盖(Covering Index)。
Using where:表明使用了where过滤。 Using join buffer:使用了连接缓存 impossible where:where子句的值总是false,不能用来获取任何元组 select tables optimized away 在没有GROUPBY子句的情况下,基于索引优化MIN/MAX操作,或者对于MyISAM存储引擎优化COUNT(*)操作,不必等到执行阶段再进行计算,查询执行计划生成的阶段即完成优化。 distinct 优化distinct操作,在找到第一匹配的元组后即停止找同样值的动作。 练习写出下图的表的执行顺序 第一行(执行顺序4):id列为1,表示是union里的第一个select,select_type列的primary表示该查询为外层查询,table列被标记为,表示查询结果来自一个衍生表,其中derived3中3代表该查询衍生自第三个select查询,即id为3的select。【select d1.name… 】 第二行(执行顺序2):id为3,是整个查询中第三个select的一部分。因查询包含在from中,所以为derived。重写后的句子为: 在表t1中选择id和name列,其中other_column列为空 第三行(执行顺序3):select列表中的子查询select_type为subquery,为整个查询中的第二个select。【select id from t3】 第四行(执行顺序1):select_type为union,说明第四个select是union里的第二个select,最先执行【select name,id from t2】 第五行(执行顺序5):代表从union的临时表中读取行的阶段,table列的<union1,4>表示用第一个和第四个select的结果进行union操作。【两个结果union操作】 5 索引优化5.1 索引单表优化案例建表: CREATE TABLE IF NOT EXISTS article( id INT(10) UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT, author_id INT(10) UNSIGNED NOT NULL, category_id INT(10) UNSIGNED NOT NULL, views INT(10) UNSIGNED NOT NULL, comments INT(10) UNSIGNED NOT NULL, title VARCHAR(255) NOT NULL, content TEXT NOT NULL ); INSERT INTO article(author_id,category_id,views,comments,title,content) VALUES (1,1,1,1,'1','1'), (2,2,2,2,'2','2'), (1,1,3,3,'3','3'); //查询 mysql> select * from article; +----+-----------+-------------+-------+----------+-------+---------+ | id | author_id | category_id | views | comments | title | content | +----+-----------+-------------+-------+----------+-------+---------+ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | 3 | 1 | 1 | 3 | 3 | 3 | 3 | +----+-----------+-------------+-------+----------+-------+---------+ 3 rows in set (0.00 sec) 登录后复制 案例 要求:查询 category_id 为 1 且 comments 大于1 的情况下,views 最多的 article_id //功能实现 mysql> SELECT id, author_id FROM article WHERE category_id = 1 AND comments > 1 ORDER BY views DESC LIMIT 1; +----+-----------+ | id | author_id | +----+-----------+ | 3 | 1 | +----+-----------+ 1 row in set (0.00 sec) //explain分析 mysql> explain SELECT id, author_id FROM article WHERE category_id = 1 AND comments > 1 ORDER BY views DESC LIMIT 1; +----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-----------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-----------------------------+ | 1 | SIMPLE | article | NULL | ALL | NULL | NULL | NULL | NULL | 3 | 33.33 | Using where; Using filesort | +----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-----------------------------+ 1 row in set, 1 warning (0.00 sec) 登录后复制
开始优化 新建索引(给WHERE语句后使用的字段添加索引) 创建方式:
索引用处不大,删除: 结论:
改进 上次创建索引相比,这次不为comments字段创建索引 结论:type变为了ref,ref 中是 const,Extra 中的 Using filesort也消失了,结果非常理想 5.2 索引两表优化案例建表: CREATE TABLE IF NOT EXISTS class( id INT(10) UNSIGNED NOT NULL AUTO_INCREMENT, card INT(10) UNSIGNED NOT NULL, PRIMARY KEY(id) ); CREATE TABLE IF NOT EXISTS book( bookid INT(10) UNSIGNED NOT NULL AUTO_INCREMENT, card INT(10) UNSIGNED NOT NULL, PRIMARY KEY(bookid) ); INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20))); //查询 mysql> select * from class; +----+------+ | id | card | +----+------+ | 1 | 17 | | 2 | 2 | | 3 | 18 | | 4 | 4 | | 5 | 4 | | 6 | 8 | | 7 | 9 | | 8 | 1 | | 9 | 18 | | 10 | 6 | | 11 | 15 | | 12 | 15 | | 13 | 12 | | 14 | 15 | | 15 | 18 | | 16 | 2 | | 17 | 18 | | 18 | 5 | | 19 | 7 | | 20 | 1 | | 21 | 2 | +----+------+ 21 rows in set (0.00 sec) mysql> select * from book; +--------+------+ | bookid | card | +--------+------+ | 1 | 8 | | 2 | 14 | | 3 | 3 | | 4 | 16 | | 5 | 8 | | 6 | 12 | | 7 | 17 | | 8 | 8 | | 9 | 10 | | 10 | 3 | | 11 | 4 | | 12 | 12 | | 13 | 9 | | 14 | 7 | | 15 | 6 | | 16 | 8 | | 17 | 3 | | 18 | 11 | | 19 | 5 | | 20 | 11 | +--------+------+ 20 rows in set (0.00 sec) 登录后复制 开始Explain分析:type都是all,需要优化(总有一个表来添加索引驱动)
删除索引:
删除索引:
结论:
5.3 索引三表优化案例建表: CREATE TABLE IF NOT EXISTS phone( phoneid INT(10) UNSIGNED NOT NULL AUTO_INCREMENT, card INT(10) UNSIGNED NOT NULL, PRIMARY KEY(phoneid) )ENGINE=INNODB; INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20))); INSERT INTO phone(card) VALUES(FLOOR(1+(RAND()*20))); //查询 mysql> select * from phone; +---------+------+ | phoneid | card | +---------+------+ | 1 | 10 | | 2 | 13 | | 3 | 17 | | 4 | 5 | | 5 | 12 | | 6 | 7 | | 7 | 15 | | 8 | 17 | | 9 | 17 | | 10 | 14 | | 11 | 19 | | 12 | 13 | | 13 | 5 | | 14 | 8 | | 15 | 2 | | 16 | 8 | | 17 | 11 | | 18 | 14 | | 19 | 13 | | 20 | 5 | +---------+------+ 20 rows in set (0.00 sec) 登录后复制 用上一节两个表,删除他们的索引:
创建索引:
Explain分析: 结论:
5.4 索引失效建表: CREATE TABLE staffs( id INT PRIMARY KEY AUTO_INCREMENT, `name` VARCHAR(24) NOT NULL DEFAULT'' COMMENT'姓名', `age` INT NOT NULL DEFAULT 0 COMMENT'年龄', `pos` VARCHAR(20) NOT NULL DEFAULT'' COMMENT'职位', `add_time` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT'入职时间' )CHARSET utf8 COMMENT'员工记录表'; INSERT INTO staffs(`name`,`age`,`pos`,`add_time`) VALUES('z3',22,'manager',NOW()); INSERT INTO staffs(`name`,`age`,`pos`,`add_time`) VALUES('July',23,'dev',NOW()); INSERT INTO staffs(`name`,`age`,`pos`,`add_time`) VALUES('2000',23,'dev',NOW()); ALTER TABLE staffs ADD INDEX index_staffs_nameAgePos(`name`,`age`,`pos`); 登录后复制 索引失效案例:
5.5 索引面试题分析建表: create table test03( id int primary key not null auto_increment, c1 char(10), c2 char(10), c3 char(10), c4 char(10), c5 char(10) ); insert into test03(c1,c2,c3,c4,c5) values ('a1','a2','a3','a4','a5'); insert into test03(c1,c2,c3,c4,c5) values ('b1','b2','b3','b4','b5'); insert into test03(c1,c2,c3,c4,c5) values ('c1','c2','c3','c4','c5'); insert into test03(c1,c2,c3,c4,c5) values ('d1','d2','d3','d4','d5'); insert into test03(c1,c2,c3,c4,c5) values ('e1','e2','e3','e4','e5'); //查看表结构 mysql> select * from test03; +----+------+------+------+------+------+ | id | c1 | c2 | c3 | c4 | c5 | +----+------+------+------+------+------+ | 1 | a1 | a2 | a3 | a4 | a5 | | 2 | b1 | b2 | b3 | b4 | b5 | | 3 | c1 | c2 | c3 | c4 | c5 | | 4 | d1 | d2 | d3 | d4 | d5 | | 5 | e1 | e2 | e3 | e4 | e5 | +----+------+------+------+------+------+ 5 rows in set (0.00 sec) 登录后复制 建索引: create index idx_test03_c1234 on test03(c1,c2,c3,c4); //查看索引 mysql> show index from test03; +--------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | +--------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | test03 | 0 | PRIMARY | 1 | id | A | 2 | NULL | NULL | | BTREE | | | | test03 | 1 | idx_test03_c1234 | 1 | c1 | A | 5 | NULL | NULL | YES | BTREE | | | | test03 | 1 | idx_test03_c1234 | 2 | c2 | A | 5 | NULL | NULL | YES | BTREE | | | | test03 | 1 | idx_test03_c1234 | 3 | c3 | A | 5 | NULL | NULL | YES | BTREE | | | | test03 | 1 | idx_test03_c1234 | 4 | c4 | A | 5 | NULL | NULL | YES | BTREE | | | +--------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ 5 rows in set (0.00 sec) 登录后复制 1)逐一增加列
group by基本上都需要进行排序,会有临时表产生 建议:
5.6 总结优化总结口诀 全值匹配我最爱, 最左前缀要遵守; 带头大哥不能死, 中间兄弟不能断; 索引列上少计算, 范围之后全失效; LIKE 百分写最右, 覆盖索引不写 *; 不等空值还有OR, 索引影响要注意; VAR 引号不可丢, SQL 优化有诀窍。 6 查询截取分析6.1 小表驱动大表EXISTS [ɪɡˈzɪsts]语法: 该语法可以理解为:将主查询的数据,放到子查询中做条件验证,根据验证结果(TRUE或FALSE)来决定主查询的数据结果是否得以保留 提示:
in和exists用法: 6.2 Order by 关键字排序优化1、ORDER BY之后子句,尽量使用Index方式排序,避免使用FileSort方式排序 建表: create table tblA( #id int primary key not null auto_increment, age int, birth timestamp not null ); insert into tblA(age, birth) values(22, now()); insert into tblA(age, birth) values(23, now()); insert into tblA(age, birth) values(24, now()); create index idx_A_ageBirth on tblA(age, birth); //查询 mysql> select * from tblA; +------+---------------------+ | age | birth | +------+---------------------+ | 22 | 2021-04-04 19:31:45 | | 23 | 2021-04-04 19:31:45 | | 24 | 2021-04-04 19:31:45 | +------+---------------------+ 3 rows in set (0.00 sec) mysql> show index from tblA; +-------+------------+----------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | +-------+------------+----------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | tbla | 1 | idx_A_ageBirth | 1 | age | A | 3 | NULL | NULL | YES | BTREE | | | | tbla | 1 | idx_A_ageBirth | 2 | birth | A | 3 | NULL | NULL | | BTREE | | | +-------+------------+----------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ 2 rows in set (0.00 sec) 登录后复制 关注点:是order by之后会不会产生Using filesort ORDER BY满足两情况,会使用Index方式排序:
2、尽可能在索引上完成排序操作,遵照建索引的最佳左前缀 3、如果不在索引列上,mysql的filesort有两种算法(自动启动)
4、优化策略
6.3 Group by 优化group by实质是先排序后进行分组,遵照索引建的最佳左前缀。 6.4 慢查询日志(重点)介绍:
操作说明: 默认情况下,MySQL数据库没有开启慢查询日速,需要我们手动来设置这个参数。 通常情况下,除非进行性能优化需要,在不必要的情况下不建议启用该参数,因为启动慢查询日志可能会对性能产生一定的负面影响。慢查询日志支持将日志记录写入文件。 查看是否开启及如何开启:
如果要永久生效,就必须修改配置文件my.cnf(其它系统变量也是如此) 修改my.cnf文件,[mysqld] 下增加或修改参数slow_query_log和slow_query_log_file后,然后重启MySQL服务器。也即将如下两行配置进my.cnf文件 slow_query_log =1slow_query_log_file=/var/lib/mysqatguigu-slow.log 登录后复制 关于慢查询的参数slow_query_log_file,它指定慢查询日志文件的存放路径, 开启了慢查询日志后,什么样的SQL才会记录到慢查询日志里面呢? 这个是由参数long_query_time控制,默认情况下long_query_time的值为10秒,命令: 如果运行时间恰好等于long_query_time,那么不会被记录下来。也就是说,在mysql源码中,它判断的是是否大于long_query_time,而不是大于等于。 命名修改慢SQL阈值时间: 假设我们成功设置慢SQL阈值时间为3秒(set global long_query_time=3;)。 模拟超时SQL: 查询当前系统中有多少条慢查询记录: #[mysqld]下配置:slow_query_log=1;slow_query_log_file=/var/lib/mysql/atguigu-slow.log long_query_time=3;log_output=FILE; 登录后复制 日志分析工具mysqldumpslow 在生产环境中,如果要手工分析日志,查找、分析SQL,显然是个体力活,MySQL提供了日志分析工具mysqldumpslow。 查看mysqldumpslow的帮助信息,
工作常用参考:
6.5 批量插入数据脚本1、建表: create database bigData;use bigData;//部门表CREATE TABLE dept( id INT UNSIGNED PRIMARY KEY AUTO_INCREMENT, deptno MEDIUMINT UNSIGNED NOT NULL DEFAULT 0, dname VARCHAR(20)NOT NULL DEFAULT "", loc VARCHAR(13) NOT NULL DEFAULT "")ENGINE=INNODB DEFAULT CHARSET=utf8;//员工表CREATE TABLE emp( id int unsigned primary key auto_increment, empno mediumint unsigned not null default 0, //编号 ename varchar(20) not null default "", //名字 job varchar(9) not null default "", //工作 mgr mediumint unsigned not null default 0, //上级编号 hiredate date not null, //入职时间 sal decimal(7,2) not null, //薪水 comm decimal(7,2) not null, //红利 deptno mediumint unsigned not null default 0 //部门编号)ENGINE=INNODB DEFAULT CHARSET=utf8; 登录后复制 2、设置参数log_bin_trust_function_creators 创建函数,假如报错:This function has none of DETERMINISTIC… 由于开启过慢查询日志,因为我们开启了bin-log,我们就必须为我们的function指定一个参数 show variables like 'log_bin_trust_function_creators';set global log_bin_trust_function_creators=1; 登录后复制 这样添加了参数以后,如果mysqld重启,上述参数又会消失,永久方法:
3、创建函数,保证每条数据都不同
4、创建存储过程
5、调用存储过程
6.6 Show Profile进行sql分析(重中之重)Show Profile是mysql提供可以用来分析当前会话中语句执行的资源消耗情况。可以用于SQL的调优的测量 官网文档 默认情况下,参数处于关闭状态,并保存最近15次的运行结果 分析步骤:
6.7 全局查询日志
此后,你所编写的sql语句,将会记录到mysql库里的geneial_log表,可以用下面的命令查看: mysql> select * from mysql.general_log; +----------------------------+------------------------------+-----------+-----------+--------------+---------------------------------+ | event_time | user_host | thread_id | server_id | command_type | argument | +----------------------------+------------------------------+-----------+-----------+--------------+---------------------------------+ | 2021-04-05 19:57:28.182473 | root[root] @ localhost [::1] | 5 | 1 | Query | select * from mysql.general_log | +----------------------------+------------------------------+-----------+-----------+--------------+---------------------------------+ 1 row in set (0.00 sec) 登录后复制 8 MySQL锁机制8.1 概述定义: 锁是计算机协调多个进程或线程并发访问某一资源的机制。 在数据库中,除传统的计算资源(如CPU、RAM、I/O等)的争用以外,数据也是一种供许多用户共享的资源。如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素。从这个角度来说,锁对数据库而言显得尤其重要,也更加复杂 例子:京东购物 打个比方,我们到京东上买一件商品,商品只有一件库存,这个时候如果还有另一个人买,那么如何解决是你买到还是另一个人买到的问题? 这里肯定要用到事务,我们先从库存表中取出物品数量,然后插入订单,付款后插入付款表信息,然后更新商品数量。在处理过程中,使用锁能够保护有限的资源,从而解决隔离和并发之间的矛盾 锁的分类:
8.2 表锁(偏读)This characteristic leans toward the MyISAM storage engine, with low costs and fast locking; there are no deadlocks; the locking granularity is large, leading to the highest probability of lock conflicts and the lowest concurrency level.。 读锁案例讲解1案例分析 建表表 create table mylock ( id int not null primary key auto_increment, name varchar(20) default '' ) engine myisam; insert into mylock(name) values('a'); insert into mylock(name) values('b'); insert into mylock(name) values('c'); insert into mylock(name) values('d'); insert into mylock(name) values('e'); #查询 mysql> select * from mylock; +----+------+ | id | name | +----+------+ | 1 | a | | 2 | b | | 3 | c | | 4 | d | | 5 | e | +----+------+ 5 rows in set (0.00 sec) 登录后复制 手动增加表锁: mysql> lock table mylock read; Query OK, 0 rows affected (0.00 sec) 登录后复制 查看表上加过的锁: mysql> show open tables; +--------------------+------------------------------------------------------+--------+-------------+ | Database | Table | In_use | Name_locked | +--------------------+------------------------------------------------------+--------+-------------+ | performance_schema | events_waits_summary_by_user_by_event_name | 0 | 0 | | performance_schema | events_waits_summary_global_by_event_name | 0 | 0 | | performance_schema | events_transactions_summary_global_by_event_name | 0 | 0 | | performance_schema | replication_connection_status | 0 | 0 | | mysql | time_zone_leap_second | 0 | 0 | | mysql | columns_priv | 0 | 0 | | my | test03 | 0 | 0 | | bigdata | mylock | 1 | 0 | # In_use为1时表示已上锁 登录后复制 释放锁: mysql> unlock tables; Query OK, 0 rows affected (0.00 sec) # 再次查看 mysql> show open tables; +--------------------+------------------------------------------------------+--------+-------------+ | Database | Table | In_use | Name_locked | +--------------------+------------------------------------------------------+--------+-------------+ | performance_schema | events_waits_summary_by_user_by_event_name | 0 | 0 | | performance_schema | events_waits_summary_global_by_event_name | 0 | 0 | | performance_schema | events_transactions_summary_global_by_event_name | 0 | 0 | | performance_schema | replication_connection_status | 0 | 0 | | mysql | time_zone_leap_second | 0 | 0 | | mysql | columns_priv | 0 | 0 | | my | test03 | 0 | 0 | | bigdata | mylock | 0 | 0 | 登录后复制 加读锁——为mylock表加read锁(读阻塞写例子) 读锁案例讲解2为mylock表加write锁(MylSAM存储引擎的写阻塞读例子) MySQL的表级锁有两种模式:
重点!: 表锁总结看看哪些表被加锁了: 如何分析表锁定 可以通过检查table_locks_waited和table_locks_immediate状态变量来分析系统上的表锁定 mysql> show status like 'table_locks%'; +-----------------------+-------+ | Variable_name | Value | +-----------------------+-------+ | Table_locks_immediate | 170 | | Table_locks_waited | 0 | +-----------------------+-------+ 2 rows in set (0.00 sec) 登录后复制 这里有两个状态变量记录MySQL内部表级锁定的情况,两个变量说明如下:
8.3 行锁(偏写)偏向InnoDB存储引擎,开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 InnoDB与MyISAM有两个主要的不同点,首先是InnoDB支持事务处理,而MyISAM不支持。其次,InnoDB使用行级锁定方式,而MyISAM使用表级锁定方式
1)事务是由一组SQL语句组成的逻辑处理单元,事务具有以下4个属性,通常简称为事务的ACID属性:
2)并发事务处理带来的问题
3)事务隔离级别 ”脏读”、“不可重复读”和“幻读”,其实都是数据库读一致性问题,必须由数据库提供一定的事务隔离机制来解决 数据库的事务隔离越严格,并发副作用越小,但付出的代价也就越大,因为事务隔离实质上就是使事务在一定程度上“串行化”进行,这显然与“并发”是矛盾的。同时,不同的应用对读一致性和事务隔离程度的要求也是不同的,比如许多应用对“不可重复读”和“幻读”并不敏感,可能更关心数据并发访问的能力。 常看当前数据库的事务隔离级别: mysql> show variables like 'tx_isolation'; +---------------+-----------------+ | Variable_name | Value | +---------------+-----------------+ | tx_isolation | REPEATABLE-READ | +---------------+-----------------+ 1 row in set, 1 warning (0.00 sec) # 默认情况下:MySQL避免了脏读和不可重复读 登录后复制 行锁案例讲解建表: CREATE TABLE test_innodb_lock (a INT(11),b VARCHAR(16))ENGINE=INNODB; INSERT INTO test_innodb_lock VALUES(1,'b2'); INSERT INTO test_innodb_lock VALUES(3,'3'); INSERT INTO test_innodb_lock VALUES(4, '4000'); INSERT INTO test_innodb_lock VALUES(5,'5000'); INSERT INTO test_innodb_lock VALUES(6, '6000'); INSERT INTO test_innodb_lock VALUES(7,'7000'); INSERT INTO test_innodb_lock VALUES(8, '8000'); INSERT INTO test_innodb_lock VALUES(9,'9000'); INSERT INTO test_innodb_lock VALUES(1,'b1'); CREATE INDEX test_innodb_a_ind ON test_innodb_lock(a); CREATE INDEX test_innodb_lock_b_ind ON test_innodb_lock(b); //查看 mysql> select * from test_innodb_lock; +------+------+ | a | b | +------+------+ | 1 | b2 | | 3 | 3 | | 4 | 4000 | | 5 | 5000 | | 6 | 6000 | | 7 | 7000 | | 8 | 8000 | | 9 | 9000 | | 1 | b1 | +------+------+ 9 rows in set (0.00 sec) mysql> show index from test_innodb_lock; +------------------+------------+------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | +------------------+------------+------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | test_innodb_lock | 1 | test_innodb_a_ind | 1 | a | A | 8 | NULL | NULL | YES | BTREE | | | | test_innodb_lock | 1 | test_innodb_lock_b_ind | 1 | b | A | 9 | NULL | NULL | YES | BTREE | | | +------------------+------------+------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ 登录后复制 行锁定基本演示(两个客户端更新同一行记录) 索引失效行锁变表锁无索引行锁升级为表锁 间隙锁
当我们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据记录的索引项加锁,对于键值在条件范围内但 InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁)。 危害 即使某些索引键值不存在,当查询执行过程中采用范围查找时,它仍会锁定范围内的所有索引键值。 间隙锁有一个比较致命的弱点,就是当锁定一个范围键值之后,即使某些不存在的键值也会被无辜的锁定,而造成在锁定的时候无法插入锁定键值范围内的任何数据。在某些场景下这可能会对性能造成很大的危害 面试题:如何锁定一行
行锁总结总结: Innodb存储引擎由于实现了行级锁定,虽然在锁定机制的实现方面所带来的性能损耗可能比表级锁定会要更高一些,但是在整体并发处理能力方面要远远优于MyISAM的表级锁定的。当系统的并发量增加时,InnoDB的性能相对MyISAM会更优。 但是,Innodb的行级锁定同样也有其脆弱的一面,当我们使用不当的时候,可能会让Innodb的整体性能表现不仅不能比MyISAM高,甚至可能会更差 如何分析行锁定? 通过检查lnnoDB_row_lock状态变量来分析系统上的行锁的争夺情况: mysql> show status like 'innodb_row_lock%'; +-------------------------------+-------+ | Variable_name | Value | +-------------------------------+-------+ | Innodb_row_lock_current_waits | 0 | | Innodb_row_lock_time | 0 | | Innodb_row_lock_time_avg | 0 | | Innodb_row_lock_time_max | 0 | | Innodb_row_lock_waits | 0 | +-------------------------------+-------+ 5 rows in set (0.00 sec) 登录后复制 对各个状态量的说明如下:
对于这5个状态变量,比较重要的主要是:
尤其是当等待次数很高,而且每次等待时长也不小的时候,我们就需要分析(Show Profile)系统中为什么会有如此多的等待,然后根据分析结果着手指定优化计划。 优化建议
页锁 通常情况下,开销和加锁时间介于表锁和行锁之间,可能产生死锁,锁定粒度也介于表锁和行锁之间,且并发性一般。(了解一下即可) 9 主从复制9.1 复制的基本原理slave会从master读取binlog来进行数据同步 原理图:
9.2 复制的基本原则
复制的最大问题是延迟。 9.3 一主一从常见配置一、mysql版本一致且后台以服务运行 二、主从都配置在[mysqld]结点下,都是小写 主机修改my.ini配置文件: 1、 2、
3、[可选]启用错误日志
4、[可选]根目录
5、[可选]临时目录
6、[可选]数据目录
7、主机,读写都可以
8、[可选]设置不要复制的数据库
9、[可选]设置需要复制的数据库
从机修改my.cnf配置文件: 1、 ...#server-id=1 //注释吊...server-id=1 //开启... 登录后复制 2、[可选]启用二进制日志 三、配置文件,请主机+从机都重启后台mysql服务 主机:手动重启 Linux从机命名:
四、主机从机都关闭防火墙 windows手动关闭 关闭虚拟机linux防火墙: 五、在Windows主机上建立帐户并授权slave
六、在Linux从机上配置需要复制的主机
八、如何停止从服务复制功能: 如果有一段数据暂时不要? 从机: 主机(需要重新查刻度): 以上就是MySQL中SQL优化、索引优化、锁机制、主从复制的方法的详细内容,更多请关注模板之家(www.mb5.com.cn)其它相关文章! |